A Quasi-ergodic Theorem for Evanescent Processes
نویسنده
چکیده
We prove a conditioned version of the ergodic theorem for Markov processes, which we call a quasi-ergodic theorem. We also prove a convergence result for conditioned processes as the conditioning event becomes rarer.
منابع مشابه
A Mean Ergodic Theorem For Asymptotically Quasi-Nonexpansive Affine Mappings in Banach Spaces Satisfying Opial's Condition
متن کامل
Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state
The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing m-almost everywhere convergence, where m...
متن کاملNon-linear ergodic theorems in complete non-positive curvature metric spaces
Hadamard (or complete $CAT(0)$) spaces are complete, non-positive curvature, metric spaces. Here, we prove a nonlinear ergodic theorem for continuous non-expansive semigroup in these spaces as well as a strong convergence theorem for the commutative case. Our results extend the standard non-linear ergodic theorems for non-expansive maps on real Hilbert spaces, to non-expansive maps on Ha...
متن کاملA Concise Proof of the Multiplicative Ergodic Theorem on Banach Spaces
We give a streamlined proof of the multiplicative ergodic theorem for quasi-compact operators on Banach spaces with
متن کاملErgodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group
The aim of this paper is to prove ergodic decomposition theorems for probability measures quasi-invariant under Borel actions of inductively compact groups (Theorem 1) as well as for σ-finite invariant measures (Corollary 1). For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by ...
متن کامل